Positive Wigner functions render classical simulation of quantum computation efficient.

نویسندگان

  • A Mari
  • J Eisert
چکیده

We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation

We provide a scheme for efficient simulation of a broad class of quantum optics experiments. Our efficient simulation extends the continuous variable Gottesman–Knill theorem to a large class of non-Gaussian mixed states, thereby demonstrating that these non-Gaussian states are not an enabling resource for exponential quantum speed-up. Our results also provide an operationally motivated interpre...

متن کامل

Phase-Space Methods for Fermions

Phase-space representations first arose from the attempt to describe quantum mechanics in terms of distributions over classical variables [1]. For example, Wigner introduced a function of phase-space variables W(x, p) that would classically correspond to a joint-probability distribution: an integration over x gives the marginal distribution for p and vice-versa. However in quantum mechanics, su...

متن کامل

Jordan-Wigner formalism for arbitrary 2-input 2-output matchgates and their classical simulation

In Valiant’s matchgate theory, 2-input 2-output matchgates are 4 × 4 matrices that satisfy ten so-called matchgate identities. We prove that the set of all such matchgates (including non-unitary and non-invertible ones) coincides with the topological closure of the set of all matrices obtained as exponentials of linear combinations of the 2-qubit Jordan-Wigner (JW) operators and their quadratic...

متن کامل

Matchgates and classical simulation of quantum circuits

Let G(A,B) denote the 2-qubit gate which acts as the 1-qubit SU(2) gates A and B in the even and odd parity subspaces respectively, of two qubits. Using a Clifford algebra formalism we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally prove...

متن کامل

ua nt - p h / 04 11 02 8 v 1 4 N ov 2 00 4 Bounds on integrals of the Wigner function : the hyperbolic case

I. Abstract Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over nonco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 109 23  شماره 

صفحات  -

تاریخ انتشار 2012